Metal organic chemical vapor deposition and investigation of ZnO thin films grown on sapphire

نویسندگان

  • S. Sun
  • G. S. Tompa
  • X. W. Sun
  • Z. S. Lee
  • S. C. Lien
  • C. W. Huang
  • L. C. Cheng
  • Z. C. Feng
چکیده

A new type of large area metal organic chemical vapor deposition (MOCVD) system for the growth of high quality and large size ZnO materials is introduced. Materials properties of the un-doped, nand p-doped ZnO epi-films grown on sapphire substrates by this MOCVD system are studied by various techniques, including high resolution X-ray diffraction (XRD), UV–Visible optical transmission (OT), photoluminescence (PL) and photoluminescence excitation (PLE), synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS). The wurtzite (w) ZnO crystal structures grown with primary (0002) orientation were identified. Results have shown the high crystalline quality of MOCVD-grown ZnO films, indicated by the narrow XRD, PL and Raman line widths, strong PL signals, sharp OT edge and smooth surface. In particular, high p-type carrier concentration of N10 cm have been achieved besides the good n-type doping in ZnO. © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of ZnO Thin Films Grown on c-Sapphire by Pulsed Laser Deposition as Templates for Regrowth of ZnO by Metal Organic Chemical Vapor Deposition

The use of ZnO template layers grown Pulsed Laser Deposition (PLD) has been seen to produce dramatic improvements in the surface morphology, crystallographic quality and optical properties of ZnO layers grown on c-sapphire substrates by Metal Organic Chemical Vapor Deposition. This paper provides complementary details on the PLD-grown ZnO template properties.

متن کامل

Deposition and Characterizations of ZnO Thin Films on Al2O3 (0001) Sub- strates with III-Arsenide Intermediating Layers

ZnO thin films have been grown by radio-frequency magnetron sputtering on c-plane sapphire substrates with III-V (i.e., GaAs and InAs) intermediate layers. The intermediate layers were grown by molecular beam epitaxy. Structural and optical properties were studied by X-ray diffraction (XRD) and Raman scatterings. The growth orientations of the ZnO/III-V/c-sapphire heterostructures were determin...

متن کامل

Correlation between Zn vacancies and photoluminescence emission in ZnO films

Photoluminescence and positron annihilation spectroscopy have been used to characterize and identify vacancy-type defects produced in ZnO films grown on sapphire by metal-organic chemical-vapor deposition. The photoluminescence of the samples in the near band edge region has been studied, paying particular attention to the emission at 370.5 nm 3.346 eV . This emission has been correlated to the...

متن کامل

Properties of GaN grown at high rates on sapphire and on 6H–SiC

Thick GaN films were deposited with growth rates as high as 250 mm/h by the direct reaction of ammonia and gallium vapor at 1240 °C. The characteristics of our films are comparable to those of typical thin films grown by metal organic chemical vapor deposition or molecular beam epitaxy. Grown under identical conditions, films on ~0001! sapphire and on ~0001! 6H–SiC were compared in terms of the...

متن کامل

Effects of Growth Conditions on Structural Properties of ZnO Nanostructures on Sapphire Substrate by Metal–Organic Chemical Vapor Deposition

ZnO was grown on sapphire substrate by metal-organic chemical vapor deposition using the diethylzinc (DEZn) and oxygen (O(2)) as source chemicals at 500 degrees C. Influences of the chamber pressure and O(2)/DEZn ratio on the ZnO structural properties were discussed. It was found that the chamber pressure has significant effects on the morphology of ZnO and could result in various structures of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008